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Homework 2 Advanced Thermodynamics 
Due Tuesday September 7, 2020 

 
a) By performing a Legendre transformation show that –(dS/dP)T = (dV/dT)P.  Start by 

obtaining an expression for dG from the definition of the Gibbs free energy, G = H – ST; 
obtaining an expression for dH from the definition of H, H = U + PV, and an expression 
for dU from dU = dq +dwec.  Perform a Legendre transform with the expression for dG to 
obtain the desired Maxwell relationship. 

b) Show how you can obtain the expressions for G, H, U; dG, dH, dU, and the final Maxwell 
expression from the thermodynamic square. 

c)  Han Guangze and Meng Jianjia, Extension of Gibbs–Duhem equation including 
influences of external field Continuum Mech. Thermodyn. (2018) 30 817–823, wrote an 
expression extending the Gibbs-Duhem equation to include the influence of an external 
field such as gravity or an electric field, 𝑆𝑑𝑇 − 𝑉𝑑𝑝 + ∑𝑛*𝑑𝜇* +∑𝑌-𝑑𝑋-	= 0, where X is 
an intensive property and Y is the corresponding extensive property.  The energy 
postulate states that the differential of a form of energy is the intensive property, X, 
times the differential of the extensive property, Y. for instance for gravity (gh)dm; for 
surfaces gdA; for and electric potential field fdq, for polarization EdP’ (see the 
Guangze/Jianjia paper for definition of the terms).  Ma, Gao, Qian and Su, Size-
dependent Electrochemical Propoerties of Binary Solid Solution Nanoparticles, J. Elec. 
Soc. (2020) 167 041501, proposed the following expression for the impact of particle 
size on electrical potential in nanoparticles,  

 
Where F is the Faraday constant (charge per mole of electrons), Z is the moles of 
transferred electrons, f is electric potential.  Does this expression agree with the 
proposed expression of Guangze and Jianjia?  What is the origin of the ln() terms?  What 
is the origin of the surface energy terms?  How does the final term for electric potential 
relate to Guangze and Jianjia’s expression? 

d) We obtained in class that CV = T(dS/dT)V.  Show the origin of this expression, then use 
this expression to obtain an expression for (dCV/dV)T.  You will need to change the order 
of differentiation and use a Maxwell relation.  Provide an answer in T, P, V, and the 
tabulated derivatives a, kT, Cp, CV, µJT. 

e) Find a value for (dCV/dT)V for an ideal gas, PV = RT where V is the molar volume, and for 
the van der Waals equation, P = RT/(V – b) – a/V (or Z = PV/RT = (1/(1-b/V)) – a/(VRT)).  
What does this tell you about an ideal gas, and about a van der Waals gas?  You will 
need to define heat capacity in your explanation. 
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Answers: Homework 2 Advanced Thermodynamics 
Due Tuesday September 7, 2020 

 
a) By performing a Legendre transformation show that –(dS/dP)T = (dV/dT)P.  Start by 

obtaining an expression for dG from the definition of the Gibbs free energy, G = H – 
ST; obtaining an expression for dH from the definition of H, H = U + PV, and an 
expression for dU from dU = dq +dwec.  Perform a Legendre transform with the 
expression for dG to obtain the desired Maxwell relationship. 

 
dG = dH – SdT – TdS 
dH = dU + pdV + Vdp 
dq = TdS; dwec = -pdV 
so 
dU = TdS – pdV 
 
dG = dU + pdV + Vdp -SdT -TdS 
 dG = Vdp - SdT 
d2G/(dpdT) = (d/dp(dG/dT)p)T = -(d/dT(dG/dp)T)p = d2G/(dTdp) 
-(dS/dp)T = (dV/dT)p 
 

b) Show how you can obtain the expressions for G, H, U; dG, dH, dU, and the final 
Maxwell expression from the thermodynamic square. 

 

 
 

c)  Han Guangze and Meng Jianjia, Extension of Gibbs–Duhem equation including 
influences of external field Continuum Mech. Thermodyn. (2018) 30 817–823, wrote 
an expression extending the Gibbs-Duhem equation to include the influence of an 
external field such as gravity or an electric field, 𝑆𝑑𝑇 − 𝑉𝑑𝑝 + ∑𝑛*𝑑𝜇* +∑𝑌-𝑑𝑋-	= 
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0, where X is an intensive property and Y is the corresponding extensive property.  
The energy postulate states that the differential of a form of energy is the intensive 
property, X, times the differential of the extensive property, Y. for instance for gravity 
(gh)dm; for surfaces gdA; for and electric potential field fdq, for polarization EdP’ 
(see the Guangze/Jianjia paper for definition of the terms).  Ma, Gao, Qian and Su, 
Size-dependent Electrochemical Propoerties of Binary Solid Solution Nanoparticles, J. 
Elec. Soc. (2020) 167 041501, proposed the following expression for the impact of 
particle size on electrical potential in nanoparticles,  

 
Where F is the Faraday constant (charge per mole of electrons), Z is the moles of 
transferred electrons, f is electric potential.  Does this expression agree with the 
proposed expression of Guangze and Jianjia?  What is the origin of the ln() terms?  What 
is the origin of the surface energy terms?  How does the final term for electric potential 
relate to Guangze and Jianjia’s expression? 
 

The Ma et al. expression includes the electric potential which is sometimes written V.  This term 
should be the electric field so that it is a derivative term, dV/dr.   
The ln() terms are the entropy of mixing for the two components A and B.  This is from the ideal 
mixing law.   
The surface energy term arises from the Gibbs-Duhem equation.  𝑆𝑑𝑇 − 𝑉𝑑𝑝 + ∑𝑛*𝑑𝜇*	= 0 for 
constant temperature the first term is 0.  The pressure is in units of F/A which is the same as 
stress.  So the internal pressure for a material can be thought of as a pressure.  The chemical 
potential is V times this excess stress due to the nanosized of the particles.  There is a surface 
stress associated with molecules at the surface, sS.  The prefactor is associated with the 
geometry at the surface of the particle and in the core. 
The final term is similar to that of Guangze and Jianjia as mentioned above.   

 
d) We obtained in class that CV = T(dS/dT)V.  Show the origin of this expression, then use 

this expression to obtain an expression for (dCV/dV)T.  You will need to change the 
order of differentiation and use a Maxwell relation.  Provide an answer in T, P, V, and 
the tabulated derivatives a, kT, Cp, CV, µJT. 

 
CV = (dU/dT)V 
From the Thermodynamic Square 
dU = TdS – pdV so CV = (dU/dT)V = T (dS/dT)V - p (dV/dT)V   
Second term is 0 dV at constant V is 0 
 (dS/dT)V = CV /T 
 
To obtain (dCV/dV)T you can use the chain rule on CV = T(dS/dT)V: 
(dCV/dV)T = (dT/dV)T (dS/dT)V + T (d(dS/dT)V/dV)T 
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The first term is 0 since dT at constant T is 0.  Changing the order of differentiation for the 
second term:  (dCV/dV)T = T (d(dS/dT)V/dV)T = T (d(dS/dV)T/dT)V 
From the thermodynamic square we have (dS/dV)T = (dP/dT)V 
So the expression becomes (dCV/dV)T = T(d2P/dT2)V 
 

e) Find a value for (dCV/dT)V for an ideal gas, PV = RT where V is the molar volume, and 
for the van der Waals equation, P = RT/(V – b) – a/V (or Z = PV/RT = (1/(1-b/V)) – 
a/(VRT)).  What does this tell you about an ideal gas, and about a van der Waals 
gas?  You will need to define heat capacity in your explanation. 
 

(dP/dT)V for an ideal gas is R/V and this doesn’t change at constant V so (dCV/dT)V = 0 for an 
ideal gas.  For the van der Waals equation (dP/dT)V = R/(V-b) and the second derivative is also 0. 
 
The heat capacity has to do with how the atoms or molecules move and vibrate to store energy.  
At low temperatures there might be only vibrational energy that is being stored.  As the 
temperature rises rotation and translation can store energy.  So changes in the heat capacity 
with temperature have to do with changes in the mechanism that the atoms or molecules are 
storing energy and the distribution of these different energy storage mechanisms as the 
temperature increases and density decreases.  The details depend on the detailed structure of 
the material and how it is impacted by temperature.  The ideal gas model doesn’t include 
changes in energy storage since the different molecules do not interact with each other, they 
are always at infinite dilution.  So they have available all of the same energy storage 
mechanisms at any temperature.  The van der Waals model includes excluded volume, b, two 
atoms cannot exist in the same space (repulsive interaction), and an enthalpy of interaction, a, 
which could be an attractive potential between atoms that allows for dense states.  Neither of 
these numbers are inherently temperature dependent, so there is no change in the mechanism 
of energy storage with temperature.   


